THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW2 Solution

Yan Lung Li

1. (P. 179 Q 8)

Given $\epsilon>0$, since $\lim _{x \rightarrow a} f^{\prime}(x)=A$, there exists $\delta>0$ such that for all $y \in(a, b)$ such that $a<y<a+\delta$, $\left|f^{\prime}(y)-A\right|<\epsilon$. We claim that the same δ works for the definition of differentiability of f at a : given any $x \in(a, b)$ such that $a<x<a+\delta$, since f is continuous on $[a, x]$ and differentiable on (a, x), by Mean Value Theorem (Theorem 6.2.4), there exists $y \in(a, x)$ such that

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}(y)
$$

Since $y \in(a, x), a<y<a+\delta$ and hence

$$
\left|\frac{f(x)-f(a)}{x-a}-A\right|=\left|f^{\prime}(y)-A\right|<\epsilon
$$

Therefore, for all $\epsilon>0$, there exists $\delta>0$ such that for all $x \in(a, b)$ with $a<x<a+\delta$,

$$
\left|\frac{f(x)-f(a)}{x-a}-A\right|<\epsilon
$$

Hence, f is differentiable at a with $f^{\prime}(a)=A$.
Remark: Many students argued that y tends to a as x tends to a, so $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} f^{\prime}(y)=A$. This is reasonable, but is not vigorous enough, since the notion of "tends to" can be made precise by using $\epsilon-\delta$ argument. Also, the latter equality is not immediate from assumption, as y is not a "free variable" since y depends on x (and not necessarily continuously). It's better to use the definition of limit as demonstrated above.
2. (P. 179 Q11)

We will consider the function given in Section 6.1 Q10 in HW1:

$$
g(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}} & , x \neq 0 \\ 0 & , x=0\end{cases}
$$

As shown in the solution of HW1, g is differentiable on \mathbb{R}. We claim that g satisfies all the requirements of this question:
(i) g is uniformly continuous on $[0,1]$: since g is differentiable on \mathbb{R}, by Theorem $6.1 .2, g$ is continuous on \mathbb{R}, in particular on $[0,1]$. Therefore, by Uniform continuity theorem (Theorem 5.4.3), g is uniformly continuous on $[0,1]$.
(ii) g is differentiable on $(0,1)$: this follows immediately from the fact that g is differentiable on \mathbb{R}.
(iii) g^{\prime} is unbounded on $(0,1)$: this is demonstrated in the proof of unboundedness of g^{\prime} on $[-1,1]$ in HW1.

Therefore, g is a function satisfying all the requirements of this question.
3. (P. 179 Q15)

Since f^{\prime} is bounded on I, there exists $M \in \mathbb{R}$ such that for all $w \in I,\left|f^{\prime}(w)\right| \leq M$.
To show f satisfies a Lipschitz condition on I, it suffices to show that there exists $L \in \mathbb{R}$ such that for all $x, y \in I,|f(x)-f(y)| \leq L|x-y|$

We choose $L=M$ and claim that the above statement holds true: Given any $x, y \in I$,
Case 1: $x=y$: then $|f(x)-f(y)|=0 \leq 0=L|x-y|$
Case 2: $x<y$: Since I is an interval, $[x, y] \subseteq I$. Since f is differentiable on I, f is differentiable on $[x, y]$, and by Theorem 6.1.2 f is continuous on $[x, y]$; also f is differentiable on (x, y). Therefore, by Mean Value Theorem (Theorem 6.2.4), there exists $c \in(x, y)$ such that

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)
$$

Hence, $|f(y)-f(x)|=\left|f^{\prime}(c)\right||y-x| \leq M|y-x|$.
Case 3: $x>y$: interchanging the roles of x and y and adopt similar argument as in case 2 (i.e. replacing $[x, y]$ by $[y, x]$, etc.), we have

$$
|f(x)-f(y)| \leq M|x-y|
$$

Therefore, for all $x, y \in I,|f(x)-f(y)| \leq L|x-y|$, and hence f satisfies a Lipschitz condition on I.
Remark: Most students overlooked the case $x=y$. Although the argument is trivial, it is still essential as this is the only case where Mean Value Theorem is not applicable; also, some students combined case 2 and 3 together by saying "...there exists c between x and $y \ldots$... This is ambiguous as it is not clear whether c could possibly be x or y by saying so (in other words, whether the "between" is inclusive and exclusive). It is better to split into cases for the sake of clarity.

